DILUSO

Compiled by Sir Kwembeya

CAMBRIDGE

International Education

Grade thresholds — March 2025

Cambridge IGCSE™ Computer Science (0478)

Grade thresholds taken for Syllabus 0478 (Computer Science) in the March 2025 examination.

Minimum raw mark required for grade:

Maximum raw
mark A B C D E F G
available
Component 12 75 49 39 28 24 20 15 10
Component 22 75 55 45 36 30 24 19 14

Grade A* does not exist at the level of an individual component.

The overall thresholds for the different grades were set as follows.

Maximum -
. Combination of .
Option mafk after components A A B C D E F G
weighting
AY 150 12,22 124 | 104 | 84 64 54 44 34 24

Cambridge International General Certificate of Secondary Education
0478 Computer Science March 2025
Principal Examiner Report for Teachers

Question 10

Candidates were required to complete an extended program to meet a set of requirements given in a
scenario based on adding and outputting membership details of a sports club. The program was to display a
menu to allow three options:

e add a new member by entering a new membership code, chosen by the new member, with the program
checking to make sure it had a length of six characters and that it had not already been used before.

e display a list of all members showing their names and membership codes.

e end the program.

There was a wide range of quality of responses, with most responses using either pseudocode or Python,
but a small number of Java and VB.NET solutions were provided.

The full range of marks was awarded, with a high proportion of candidates achieving marks from the middle
or higher mark bands. Stronger responses had closely matched the requirements stated in the scenario,
ensuring that all points were fully covered.

Stronger responses had followed the remaining additional guidance at the end of the scenario. This included
the comprehensive use of comments to explain the purpose of each part or sub-part of their solution and the
use of appropriate messages to accompany all inputs and outputs.

The best responses correctly used all the data structures given in the scenario; in the way they were
expected to be used as stated in their descriptions. These were the one-dimensional array MemberID[] to
store unique membership codes, the two-dimensional array Name [] to store members first and last names
and the variable NewID to allow a new membership code to be input.

0478/22 February/March 2023

11 The one-dimensional (1D) array TeamName [] contains the names of teams in a sports league.
The two-dimensional (2D) array TeamPoints[] contains the points awarded for each match.
The position of each team'’s data in the two arrays is the same. For example, the team stored at
index 10 in TeamName [] and TeamPoints[] is the same.

The variable LeagueSize contains the number of teams in the league. The variable MatchNo
contains the number of matches played. All teams have played the same number of matches.

The arrays and variables have already been set up and the data stored.

Each match can be played at home or away. Points are recorded for the match results of each
team with the following values:

¢ 3-awaywin

¢ 2-home win

¢ 1-drawn match

¢ 0-lost match.

Write a program that meets the following requirements:
* calculates the total points for all matches played for each team
* counts the total number of away wins, home wins, drawn matches and lost matches for each
team
* outputs for each team:
- name
- total points
- total number of away wins, home wins, drawn matches and lost matches
* finds and outputs the name of the team with the highest total points
* finds and outputs the name of the team with the lowest total points.

You must use pseudocode or program code and add comments to explain how your code works.

You do not need to declare any arrays, variables or constants; you may assume that this has
already been done.

Allinputs and outputs must contain suitable messages.

You do not need to initialise the data in the arrays TeamName[] and TeamPoints[] or the

variables LeagueSize and MatchNo
|

Solution

// Loop through each team to calculate total points and match statistics
FOR TeamIndex — 0 TO LeagueSize - 1

TotalPoints « O

AwayWins « O

HomeWins « O

Draws < 0

Losses « 0

// Loop through each match played by the team
FOR MatchIndex « 0 TO MatchNo - 1
Points « TeamPoints[TeamIndex] [MatchIndex]

// Add to total points
TotalPoints ~ TotalPoints + Points

// Count match result types
IF Points = 3 THEN
AwayWins « AwayWins + 1
ELSE IF Points = 2 THEN
HomeWins « HomeWins + 1
ELSE IF Points = 1 THEN
Draws « Draws + 1
ELSE IF Points = 0 THEN
Losses « Losses + 1
ENDIF
NEXT MatchIndex

// Store total points for later comparison
TeamTotalPoints[TeamIndex] « TotalPoints

// Output team statistics

OUTPUT "Team Name: ", TeamName |[TeamIndex]
OUTPUT "Total Points: ", TotalPoints
OUTPUT "Away Wins: ", AwayWins

OUTPUT "Home Wins: ", HomeWins

OUTPUT "Draws: ", Draws

OUTPUT "Losses: ", Losses

OUTPUT "——-————mm—mmmmmmmm oo "

NEXT TeamIndex

// Find team with highest and lowest total points
MaxPoints « TeamTotalPoints[0]

MinPoints «~ TeamTotalPoints[0]

MaxTeam ~ TeamName [0]

MinTeam TeamName [O]

FOR TeamIndex — 1 TO LeagueSize - 1
IF TeamTotalPoints[TeamIndex] > MaxPoints THEN
MaxPoints «~ TeamTotalPoints[TeamIndex]
MaxTeam « TeamName [TeamIndex]
ENDIF

IF TeamTotalPoints[TeamIndex] < MinPoints THEN
MinPoints « TeamTotalPoints[TeamIndex]
MinTeam « TeamName [TeamIndex]

ENDIF

NEXT TeamIndex

// Output highest and lowest scoring teams

OUTPUT "Team with highest total points: ", MaxTeam, " (", MaxPoints, "
points)"
OUTPUT "Team with lowest total points: ", MinTeam, " (", MinPoints, "
points)"

0478/22 May/June 2023

12 Atwo-dimensional (2D) array Account [] contains account holders’ names and passwords for a
banking program.

A 2D array AccDetails[] has three columns containing the following details:

* column one stores the balance — the amount of money in the account, for example 250.00

* column two stores the overdraft limit — the maximum total amount an account holder can
borrow from the bank after the account balance reaches 0.00, for example 100.00

* column three stores the withdrawal limit — the amount of money that can be withdrawn at one
time, for example 200.00

The amount of money in a bank account can be negative (overdrawn) but not by more than the
overdraft limit.

For example, an account with an overdraft limit of 100.00 must have a balance that is greater than
or equal to -100.00

Suitable error messages must be displayed if a withdrawal cannot take place, for example if the
overdraft limit or the size of withdrawal is exceeded.

The bank account ID gives the index of each account holder’s data held in the two arrays.
For example, account ID 20's details would be held in:

Account [20,1] and Account [20, 2]

AccDetails[20,1) AccDetails([20,2] and AccDetails[20, 3]

The variable size contains the number of accounts.
The arrays and variable Size have already been set up and the data stored.

Write a program that meets the following requirements:
* checks the account ID exists and the name and password entered by the account holder
match the name and password stored in Account [] before any action can take place
* displays a menu showing the four actions available for the account holder to choose from:
1. display balance
2. withdraw money
3. deposit money
4. exit
* allows an action to be chosen and completed. Each action is completed by a procedure
with a parameter of the account ID.

You must use pseudocode or program code and add comments to explain how your code works.
All inputs and outputs must contain suitable messages.

You only need to declare any local arrays and local variables that you use.

You do not need to declare and initialise the data in the global arrays Account([] and
AccDetails[] and the variable Size

Solution:

// Prompt user to enter account ID
INPUT "Enter your account ID: " — AccountID

// Check if AccountID is wvalid

IF AccountID < 0 OR AccountID 2 Size THEN
OUTPUT "Error: Invalid account ID."
STOP

ENDIF

// Prompt for name and password
INPUT "Enter your name: " — InputName
INPUT "Enter your password: " — InputPassword

// Verify credentials
IF Account[AccountID, 1] # InputName OR Account[AccountID, 2] #
InputPassword THEN
OUTPUT "Error: Name or password incorrect."
STOP
ENDIF

// Display menu and loop until user exits
REPEAT

OUTPUT "Choose an action:"

OUTPUT "1. Display balance"

OUTPUT "2. Withdraw money"

OUTPUT "3. Deposit money"

OUTPUT "4. Exit"

INPUT "Enter your choice (1-4): " - Choice

IF Choice = 1 THEN

CALL DisplayBalance (AccountID)
ELSE IF Choice = 2 THEN

CALL WithdrawMoney (AccountID)
ELSE IF Choice = 3 THEN

CALL DepositMoney (AccountID)
ELSE IF Choice = 4 THEN

OUTPUT "Thank you. Goodbye!"
ELSE

OUTPUT "Invalid choice. Please select 1-4."
ENDIF

UNTIL Choice = 4

// Procedure to display balance
PROCEDURE DisplayBalance (ID)

OUTPUT "Your current balance is: ", AccDetails[ID, 1]
ENDPROCEDURE

// Procedure to withdraw money
PROCEDURE WithdrawMoney (ID)
INPUT "Enter amount to withdraw: " — Amount

// Check withdrawal limit
IF Amount > AccDetails[ID, 3] THEN

OUTPUT "Error: Withdrawal exceeds limit of ", AccDetails[ID

RETURN
ENDIF

// Check overdraft limit
NewBalance AccDetails[ID, 1] - Amount
IF NewBalance < -AccDetails[ID, 2] THEN
OUTPUT "Error: Withdrawal exceeds overdraft limit."

1

RETURN
ENDIF

// Update balance

AccDetails[ID, 1] < NewBalance

OUTPUT "Withdrawal successful. New balance: ", NewBalance
ENDPROCEDURE

// Procedure to deposit money
PROCEDURE DepositMoney (ID)

INPUT "Enter amount to deposit: " — Amount

AccDetails[ID, 1] « AccDetails[ID, 1] + Amount

OUTPUT "Deposit successful. New balance: ", AccDetails[ID, 1]
ENDPROCEDURE

0478/22 October/November 2023

A wood flooring company stores the names of up to 100 customers in a one-dimensional (1D) array
Customers[]. A two-dimensional (2D) array Quotations[] stores details of each customer's
quotation:

. length of room (one decimal place)

. width of room (one decimal place)

. area of wood required (rounded up to next whole number)

. choice of wood index (whole number)

. price of wood required in dollars (two decimal places).

The floor measurements (room length and room width) are taken in metres. All floors are rectangles
and room measurements must be between 1.5 and 10.0 inclusive.

The index of any customer’s data is the same in both arrays. For example, a customer named in
index 4 of Customers [] corresponds to the data in index 4 of Quotations|[)

The wood choices available are:

Index Wood type Price per square metre ($)
1 Laminate 29.99
2 Pine 39.99
3 Oak 54.99

The data are stored in two 1D arrays named WoodType [] and Price []. The index of the wood
type and price in their arrays share the same index number.

Write a program that meets the following requirements:

. input a new customer’s name, room iength and room width

o check that each measurement is valid

. output an error message and require the measurement to be re-entered until it is valid

. calculate the area of the room by multiplying together the length of the room and the width of
the room

. input the choice of wood and find its price per square metre

. calculate the price of the wood needed

. store all data in the relevant array

. output the customer’s quotation to include: the name of the customer, the choice of wood and
the calculated price of the wood required

. continue to accept the next customer.

You must use pseudocode or program code and add comments to explain how your code works.
You do not need to declare any arrays or variables; you may assume that this has already been
done.

You will need to initialise WoodType [] and Price|]

All inputs and outputs must contain suitable messages.

Solution:

// Initialize wood types and prices
WoodType[l] « "Laminate"
WoodType[2] « "Pine"

WoodType [3] « "Oak"

Price[l] « 29.99
Price[2] « 39.99
Price[3] « 54.99

CustomerIndex « 0 // Start index for storing customer data
REPEAT
// Input customer name

INPUT "Enter customer name: " — Customers[CustomerIndex]
// Input and validate room length
REPEAT
INPUT "Enter room length (1.5 to 10.0 metres): " — Length

IF Length < 1.5 OR Length > 10.0 THEN
OUTPUT "Error: Length must be between 1.5 and 10.0 metres."
ENDIF
UNTIL Length 2 1.5 AND Length < 10.0
// Input and validate room width
REPEAT
INPUT "Enter room width (1.5 to 10.0 metres): " — Width
IF Width < 1.5 OR Width > 10.0 THEN
OUTPUT "Error: Width must be between 1.5 and 10.0 metres."
ENDIF
UNTIL Width 2 1.5 AND Width £ 10.0

// Calculate area and round up
Area « Length * Width
RoundedArea « CEILING (Area)

// Input wood choice
REPEAT
INPUT "Enter wood choice (1 = Laminate, 2 = Pine, 3 = Oak): " -
WoodChoice
IF WoodChoice < 1 OR WoodChoice > 3 THEN
OUTPUT "Error: Invalid wood choice. Please enter 1, 2, or 3."
ENDIF
UNTIL WoodChoice 2 1 AND WoodChoice £ 3

// Get price per square metre
UnitPrice « Price[WoodChoice]

// Calculate total price
TotalPrice « RoundedArea * UnitPrice
// Store quotation details

Quotations[CustomerIndex, 1] « Length
Quotations[CustomerIndex, 2] « Width
Quotations[CustomerIndex, 3] « RoundedArea
Quotations[CustomerIndex, 4] — WoodChoice
Quotations[CustomerIndex, 5] « TotalPrice

// Output quotation

OUTPUT "Quotation for ", Customers[CustomerIndex]
OUTPUT "Wood type: ", WoodType [WoodChoice]

OUTPUT "Total price: $", TotalPrice

// Ask if another customer should be entered
INPUT "Do you want to enter another customer? (Yes/No): " - Response
CustomerIndex « CustomerIndex + 1

UNTIL Response = "No"

0478/22 Februaryv/March 2024

11 Students in a class are recording the amount of time in minutes spent in front of a screen for each
day of the week.

The one-dimensional (1D) array StudentName [] contains the names of the students in the class.

The two-dimensional (2D) array ScreenTime [] is used to input the number of minutes on each
day spent in front of a screen.

The position of each student’s data in the two arrays is the same. For example, the student stored
atindex 10 in StudentName [] and ScreenTime[] is the same.

The variable ClassSize contains the number of students in the class.

Write a program that meets these requirements:
+ allows all the students to enter their daily minutes of screen times for the past week
* calculates the total number of minutes of screen time for each student in the week
* counts, for each student, the number of days with more than 300 minutes of screen time
* calculates the average weekly minutes of screen time for the whole class
* finds the student with the lowest weekly minutes of screen time
* outputs for each student:

- name

— total week’s screen time in hours and minutes

- number of days with more than 300 minutes of screen time
* outputs the average weekly minutes of screen time for the whole class
* outputs the name of the student with the lowest weekly screen time.

You must use pseudocode or program code and add comments to explain how your code works.
All'inputs and outputs must contain suitable messages.

Assume that the array StudentName[] and the variable ClassSize already contain the
required data.

You do not need to declare any arrays or variables; you may assume that this has already been
done.

Solution:

// Initialize variables
TotalClassMinutes « 0
LowestMinutes « 999999
LowestStudent ~ ""

// Loop through each student

FOR StudentIndex « 0 TO ClassSize - 1
WeeklyTotal « O
Over300Days « 0

// Input screen time for each day of the week
FOR Day « 0 TO 6
INPUT "Enter screen time in minutes for ",
StudentName [StudentIndex], " on day ", Day + 1, ": " -
ScreenTime [StudentIndex] [Day]
WeeklyTotal < WeeklyTotal + ScreenTime[StudentIndex] [Day]

// Count days with more than 300 minutes
IF ScreenTime[StudentIndex] [Day] > 300 THEN
Over300Days « Over300Days + 1
ENDIF
NEXT Day

// Convert weekly total to hours and minutes
Hours — WeeklyTotal DIV 60
Minutes ~ WeeklyTotal MOD 60

// Output student summary

OUTPUT "Student: ", StudentName[StudentIndex]

OUTPUT "Total weekly screen time: ", Hours, " hours and ", Minutes, "
minutes"

OUTPUT "Days with more than 300 minutes: ", Over300Days

OUTPUT M——m—mmm oo oo "

// Add to class total
TotalClassMinutes « TotalClassMinutes + WeeklyTotal

// Check for lowest screen time
IF WeeklyTotal < LowestMinutes THEN
LowestMinutes — WeeklyTotal
LowestStudent ~ StudentName[StudentIndex]
ENDIF
NEXT StudentIndex

// Calculate and output class average

AverageMinutes « TotalClassMinutes DIV ClassSize

OUTPUT "Average weekly screen time for the class: ", AverageMinutes, "
minutes"

// Output student with lowest screen time
OUTPUT "Student with the lowest weekly screen time: ", LowestStudent, " (",
LowestMinutes, " minutes)"

0478/22 May/June 2024

11 Aone-player game uses the two-dimensional (2D) array Grid (] to store the location of a secret
cell to be found by the player in 10 moves. Each row and column has 5 cells.

Start
Grid(1,1]

At the start of the game:

* The program places an ‘X’ in a random cell (not in Grid[1,1]) and empties all the other
cells in the grid.

* The player starts at the top left of the grid.

* The player has 10 moves.

During the game:

* The player can move left, right, up or down by one cell and the move must be within the grid.

* “You Win" is displayed if the player moves to the cell with ‘X’ and has played 10 moves or
less.

* “You Lose" is displayed if the player has made 10 moves without finding the ‘X'.

Write a program that meets these requirements.

You must use pseudocode or program code and add comments to explain how your code works.

You do not need to declare any arrays or variables; you may assume that this has already been
done.

All inputs and outputs must contain suitable messages.

Solution:

// Initialize grid size
GridSize « 5

// Randomly place 'X' in a cell that is not Grid[1][1]
REPEAT

SecretRow — RANDOM (1, GridSize)

SecretCol — RANDOM (1, GridSize)
UNTIL SecretRow # 1 OR SecretCol # 1

// Initialize grid with empty cells
FOR Row « 1 TO GridSize
FOR Col « 1 TO GridSize
Grid[Row] [Col] ~ ""
NEXT Col
NEXT Row

// Place 'X' in the secret cell
Grid[SecretRow] [SecretCol] ~ "X"

// Set starting position
PlayerRow « 1

PlayerCol ~ 1

Moves « 0

Found « FALSE

// Game loop: allow up to 10 moves
WHILE Moves < 10 AND Found = FALSE

OUTPUT "Move ", Moves + 1, ": You are at position (", PlayerRow, "
PlayerCol, ")"
INPUT "Enter move direction (up/down/left/right): " — Direction

// Update position based on direction
IF Direction = "up" THEN
IF PlayerRow > 1 THEN
PlayerRow « PlayerRow - 1

ELSE
OUTPUT "Invalid move: You can't move up."
ENDIF
ELSE IF Direction = "down" THEN

IF PlayerRow < GridSize THEN
PlayerRow — PlayerRow + 1

ELSE
OUTPUT "Invalid move: You can't move down."
ENDIF
ELSE IF Direction = "left" THEN

IF PlayerCol > 1 THEN
PlayerCol ~ PlayerCol -1

ELSE
OUTPUT "Invalid move: You can't move left."
ENDIF
ELSE IF Direction = "right" THEN

IF PlayerCol < GridSize THEN
PlayerCol — PlayerCol + 1

ELSE
OUTPUT "Invalid move: You can't move right."
ENDIF
ELSE
OUTPUT "Invalid input. Please enter up, down, left, or right."
CONTINUE
ENDIF

// Check if player found the secret cell

IF Grid[PlayerRow] [PlayerCol] = "X" THEN
Found — TRUE
OUTPUT "You Win! You found the secret cell in ", Moves + 1, "
moves."
ENDIF

// Increment move count
Moves « Moves + 1
ENDWHILE

// If player didn't find the cell in 10 moves
IF Found = FALSE THEN

OUTPUT "You Lose! You did not find the secret cell in 10 moves."
ENDIF

12

0478/22 October/November 2024:

A one-dimensional (1D) array Rooms [] contains the names of up to 20 rooms in a house.
A two-dimensional (2D) array Dimensions[] is used to store the length, width and area of each
room.

The position of any room’s data is the same in both arrays. For example, the data in index 5 of
Dimensions (] belongs to the room in index 5 of Rooms []

The variable Numbe r stores the number of rooms for which data is to be input. There must be at
least 3 rooms but no more than 20.

Write a program that meets the following requirements:

allows the number of rooms for which data is required to be input, stored and validated
allows the name of the room and the length and width of the room, in metres, to be entered
and stored

allows the area of each room to be calculated as length multiplied by width and stored as
square metres rounded to two decimal places

calculates the average size of all the rooms by area, in square metres, rounded to two decimal
places

finds the largest room and smallest room by area

outputs the names of all rooms with their dimensions and area

outputs the names of the largest room and smallest room by area

outputs the total area of the house and the average size of all the rooms by area.

You must use pseudocode or program code and add comments to explain how your code works.

You do not need to declare any arrays or variables; you may assume that this has already been
done.

All inputs and outputs must contain suitable messages.

Solution:

// Input and validate number of rooms
REPEAT
INPUT "Enter the number of rooms (between 3 and 20): " - Number
IF Number < 3 OR Number > 20 THEN
OUTPUT "Error: You must enter a number between 3 and 20."
ENDIF
UNTIL Number = 3 AND Number < 20

TotalArea « O
LargestArea -1
SmallestArea — 999999
LargestRoom ~ ""
SmallestRoom ~ ""

// Input room data and calculate area
FOR Index « 0 TO Number - 1

INPUT "Enter name of room " + (Index + 1) + ": " - Rooms[Index]
INPUT "Enter length of " + Rooms[Index] + " in meters: " - Length
INPUT "Enter width of " + Rooms[Index] + " in meters: " — Width

Area « Length * Width
Area < ROUND (Area, 2) // Round to two decimal places

Dimensions[Index] [0] — Length
Dimensions[Index] [1] < Width
Dimensions[Index] [2] < Area

TotalArea — TotalArea + Area

// Check for largest room

IF Area > LargestArea THEN
LargestArea « Area
LargestRoom — Rooms|[Index]

ENDIF

// Check for smallest room
IF Area < SmallestArea THEN
SmallestArea Area
SmallestRoom « Rooms[Index]
ENDIF
NEXT Index
// Calculate average area
AverageArea « ROUND (TotalArea / Number, 2)

// Output room details
OUTPUT "Room Details:"
FOR Index « 0 TO Number - 1

OUTPUT "Room: ", Rooms[Index]

OUTPUT "Length: ", Dimensions[Index][0], " m"

OUTPUT "Width: ", Dimensions[Index][1], " m"

OUTPUT "Area: ", Dimensions[Index][2], " square meters"
OUTPUT "—————mmmmmmmmmmm e oo "

NEXT Index

// Output summary

OUTPUT "Largest room: ", LargestRoom, " with area ", LargestArea, " square
meters"

OUTPUT "Smallest room: ", SmallestRoom, " with area ", SmallestArea, "
square meters"

OUTPUT "Total area of the house: ", TotalArea, " square meters"

OUTPUT "Average room size: ", AverageArea, " square meters"

0478/22 February/March 2025

10 A sports club uses a six-character alphanumeric membership code to identify each member of the
club.

The one-dimensional (1D) array MemberID[] is used to store the unique membership codes for
club members.

The two-dimensional (2D) array Name [] is used to store the names of the club members. The first
and last name of each member will be stored in separate array elements.

The system can store details for a maximum of 1000 members.

The position of any member's data is the same in both arrays. For example, the data in index 2 of
MemberID[] belongs to the member in index 2 of Name [)

The variable NewID is used to input a new membership code.
Write a program that meets the following requirements:

* Provide a menu that offers the choices: inputting a new member, outputting a list of
membership codes and first and last names, or stopping.

* Input and validate a response to the menu.

* When inputting a new member, input a new membership code and check that it contains six
characters:

o If the new code is six characters, check it against all the previously stored membership
codes to make sure it is unique.

o If the code is not unique, a new code must be entered and checked.

o If the code is unique, it is stored in the first available space in the appropriate array
and the new member is required to enter their first name and last name, which are also
stored in the corresponding location of the appropriate array.

* When outputting a list of membership codes and names, output for each member: their
membership code, first name and last name.
* The program will continue until the stop option on the menu is selected.

You must use pseudocode or program code and add comments to explain how your code works.

You do not need to declare any arrays, variables or constants; assume this has already been
done.

You do not need to initialise the data in the arrays.
You do need to initialise any variables or constants used if appropriate.

All inputs and outputs must contain suitable messages.

Solution:

// Initialize variables
Count « 0 // Number of members currently stored
Choice « "" // Menu choice

// Main program loop
REPEAT
// Display menu
OUTPUT "Menu:"
OUTPUT "1. Input new member"
OUTPUT "2. Output list of members"
OUTPUT "3. Stop"
INPUT "Enter your choice (1-3): " - Choice

// Validate menu choice
WHILE Choice # "1" AND Choice # "2" AND Choice # "3"
OUTPUT "Invalid choice. Please enter 1, 2, or 3."

INPUT "Enter your choice (1-3): " - Choice
ENDWHILE
IF Choice = "1" THEN

// Input new member
IF Count = 1000 THEN
OUTPUT "Maximum number of members reached. Cannot add more."

ELSE
REPEAT
INPUT "Enter a new 6-character membership code: " — NewID
IF LENGTH (NewID) # 6 THEN
OUTPUT "Error: Membership code must be exactly 6
characters."

ELSE
// Check for uniqueness
Unique « TRUE
FOR Index « 0 TO Count - 1
IF MemberID[Index] = NewID THEN
Unique « FALSE
OUTPUT "Error: Membership code already exists.
Enter a different code."
BREAK
ENDIF
NEXT Index
ENDIF
UNTIL LENGTH (NewID) = 6 AND Unique = TRUE

// Store membership code
MemberID[Count] « NewID

// Input and store names
INPUT "Enter first name: " — Name[Count] [0]
INPUT "Enter last name: " — Name[Count] [1]

OUTPUT "Member successfully added.”
Count <« Count + 1
ENDIF

ELSE IF Choice = "2" THEN
// Output list of members
IF Count = 0 THEN
OUTPUT "No members to display."
ELSE
OUTPUT "List of Members:"
FOR Index « 0 TO Count - 1

OUTPUT "Membership Code: ", MemberID[Index]
OUTPUT "First Name: ", Name[Index] [0]
OUTPUT "Last Name: ", Name[Index][1]

OUTPUT M—————m— o mmmmmmmmmmmm e "

NEXT Index
ENDIF
ENDIF
UNTIL Choice = "3"

OUTPUT "Program stopped. Goodbye!"

THEEND

